Satellites: India

From Indpaedia
(Difference between revisions)
Jump to: navigation, search
(Aryabhata: India’s first satellite into space)
(Aryabhata: India’s first satellite into space)
Line 53: Line 53:
 
India launched its first satellite into space on April 19, 1975. Named after the ancient Indian astronomer, Aryabhata was constructed by the Indian Space Research Organisation (ISRO) and rode into space aboard a Kosmos-3M launch vehicle from Kapustin Yar, the then Soviet Union's rocket launch and development site. It was constructed with the aim of gaining experience in building and operating satellites, but was also equipped with a suite of instruments to conduct experiments in x-ray astronomy and solar physics, among others. Aryabhata was designed as a 26-sided polyhedron, with a diameter of just over four-and-a-half feet, and was powered by solar panels, which were laid over 24 of the 26 sides of the satellite. Unfortunately, Aryabhata's mission was shortlived-a power failure caused the mission to end after four days, after the satellite had completed just 60 orbits of the Earth.
 
India launched its first satellite into space on April 19, 1975. Named after the ancient Indian astronomer, Aryabhata was constructed by the Indian Space Research Organisation (ISRO) and rode into space aboard a Kosmos-3M launch vehicle from Kapustin Yar, the then Soviet Union's rocket launch and development site. It was constructed with the aim of gaining experience in building and operating satellites, but was also equipped with a suite of instruments to conduct experiments in x-ray astronomy and solar physics, among others. Aryabhata was designed as a 26-sided polyhedron, with a diameter of just over four-and-a-half feet, and was powered by solar panels, which were laid over 24 of the 26 sides of the satellite. Unfortunately, Aryabhata's mission was shortlived-a power failure caused the mission to end after four days, after the satellite had completed just 60 orbits of the Earth.
  
 
+
= Bhaskara-I: India’s first low orbit Obsevation Satellite =
[[Category:India |S ]]
+
[http://indiatoday.intoday.in/story/india-today-41st-anniversary-science-technology-progress/1/834949.html India Today.in , Keeping an eye on earth “India Today” 15/12/2016]
[[Category:S&T |S ]]
+
[[File: Bhaskara-I , India Today .jpg| Bhaskara-I , India Today |frame|500px]]
  
 
= Satellite TV =
 
= Satellite TV =

Revision as of 16:35, 28 July 2017

Countries with 10 or more operational satellites, India and the world; Graphic courtesy: The Times of India

This is a collection of articles archived for the excellence of their content.
You can help by converting these articles into an encyclopaedia-style entry,
deleting portions of the kind normally not used in encyclopaedia entries.
Please also fill in missing details; put categories, headings and sub-headings;
and combine this with other articles on exactly the same subject.

Readers will be able to edit existing articles and post new articles directly
on their online archival encyclopædia only after its formal launch.

See examples and a tutorial.

Contents

Geosynchronous Satellite Launch Vehicle/ 2013

GSLV has had a chequered past

The Times of India 2013/08/20

Arun Ram TNN

India’s efforts to power Geosynchronous Satellite Launch Vehicle with indigenous cryogenic engine continue to be jinxed.

The Indian Space Research Organization (Isro) in Aug 2013 called off the launch of the GSLV-D5 after scientists detected a leak in the second stage liquid propellant tank.

The GSLV-D5 launch is crucial as it would demonstrate the country’s ability to develop and use cryogenic engines that are a requisite for the launch of big telecommunication satellites and Isro’s ambitious projects, including manned missions. PSLVs, which India has mastered, can only carry satellites weighing less than 1,500kg.

History

Postponing GSLV flights at the last moment is not new to the somewhat-jinxed three-stage rocket.

The first mission of this rocket was scrubbed following a technical snag and a fire when the countdown hit the zero mark at Sriharikota 12 years ago on March 30, 2001. The countdown was progressing smoothly, and since it was the maiden flight of a new rocket, foreign countries were keenly watching the mission.

The mood was a mixture of excitement and nervous apprehension, till the countdown hit the zero mark and an Isro official announced ‘fire, fire’ over the public address system and declared that the launch was scrubbed. The rocket was back on the launchpad within two weeks and was launched on April 18, 2001. It was only a partial success because the satellite, GSat-1, failed to achieve its orbit. The postponement of the launch on Monday has also raised serious questions about the schedule of India’s second lunar mission, Chandryaan-2, which will use this rocket. Provisionally, it is slated for lift off in 2016.

If this rocket had maintained a good track record, India would not have depended upon Arianespace to launch its two to 2.5-tonne communication satellites. Of the seven flights between 2001 and 2010, only two have been fully successful.

Aryabhata: India’s first satellite into space

India Today.in , Once an astronomer, then a satellite “India Today” 15/12/2016

A 1976 stamp from the USSR featuring Aryabhata , India Today , December 15,2016

1975

Aryabhata

Once an astronomer, then a satellite

India launched its first satellite into space on April 19, 1975. Named after the ancient Indian astronomer, Aryabhata was constructed by the Indian Space Research Organisation (ISRO) and rode into space aboard a Kosmos-3M launch vehicle from Kapustin Yar, the then Soviet Union's rocket launch and development site. It was constructed with the aim of gaining experience in building and operating satellites, but was also equipped with a suite of instruments to conduct experiments in x-ray astronomy and solar physics, among others. Aryabhata was designed as a 26-sided polyhedron, with a diameter of just over four-and-a-half feet, and was powered by solar panels, which were laid over 24 of the 26 sides of the satellite. Unfortunately, Aryabhata's mission was shortlived-a power failure caused the mission to end after four days, after the satellite had completed just 60 orbits of the Earth.

Bhaskara-I: India’s first low orbit Obsevation Satellite

India Today.in , Keeping an eye on earth “India Today” 15/12/2016

Bhaskara-I , India Today

Satellite TV

SITE TV sets being assembled , India Today

India Today.in , A SITE for sore eyes “India Today” 15/12/2016

Villagers watching a SITE programme , India Today

1975

NASA's ATS-6 Satellite; A UHF Antenna used to receive signal , India Today

Satellite TV

A SITE for sore eyes

The Satellite Instructional Television Experiment (SITE) began on August 1 in that year. For the first time, 2,400 black-and-white community TV sets came alive in as many villages, clustered in six states across the country. This was long before urban India, including the metros, experienced television. The project, undertaken by ISRO, was designed and implemented in collaboration with the National Aeronautics and Space Administration (NASA) of the United States. This was one of the largest experiments of its kind, with the aim of demonstrating the potential of satellite technology as an effective medium of mass communication for a developing country. Educational programmes made in India were beamed by the Application Technology Satellite (ATS-6) of the US. The year-long SITE project established that the extension of communications infrastructure to remote areas was not only feasible, but that it could also make a contribution to promoting national development.

Rukmini (GSAT-7): India's first military satellite

India's first military satellite successfully launched

Rajat Pandit, TNN | Aug 30, 2013

The Times of India

NEW DELHI: India's first military satellite GSAT-7 or " Rukmini", which will boost the Navy's blue-water combat capabilities with a 2,000-nautical mile footprint over the crucial Indian Ocean Region (IOR), was successfully launched from Kourou Island in French Guiana in the early hours on Friday.

Injected into the "geosynchronous transfer orbit" by European space consortium Arianespace's launch rocket around 2am, GSAT-7 promptly deployed its solar panels to generate 2,900 watt, even as ISRO master control facility at Hassan in Karnataka began acquiring its signals.

The naval communication and surveillance satellite will now undergo "three orbit-raising operations" over the next five days to place it in the geostationary orbit of almost 36,000-km above the equator. Once positioned in its orbital slot of 74 degree East Longitude by September 14, its all-important UHF, S, Ku and C-band transponders will begin beaming signals after they are switched on.

It will then become "a potent force-multiplier", networking all Indian warships, submarines and aircraft with operational centres ashore through high-speed encrypted data-links. This is the first time a high-power UHF (ultra high-frequency) transponder forms part of an Indian communication satellite like INSAT or GSAT.

The Navy has been leasing transponders of domestic and foreign satellites over the years for reconnaissance, navigation, communication and other purposes. Now, it will have a "dedicated" satellite of its own to keep tabs over almost the entire IOR — stretching from the African east coast to Malacca Strait, where China is assiduously expanding its strategic footprint.

From the individual "I see, I kill" operation, the entire Navy will now be "seamlessly" networked to get "a composite, clear picture of all the actors" in the IOR. It will transform from "a platform-centric" Navy to "a network-enabled" force. Shorn of military lingo, this means the ability to detect and share emerging maritime threats "in real-time" so that a counter to "neutralise" them can be swiftly launched, said sources.

The Navy has already tested the "ship-end" for "network-centric operations" through the massive Tropex (theatre-level readiness and operational exercise) manoeuvres, with both the eastern and western fleets accompanied by fighters, spy drones and helicopters out at sea.

India might not want "militarisation of space" but effective use of this final frontier for reconnaissance and communication missions to keep tabs on enemy troop movements, missile silos, airbases and the like across land and maritime borders cannot be overstressed. "Satellites can also help in missile early-warning, delivery of precision-guided munitions and jamming enemy networks," said an official.

'Rukmini' boost to Navy

  • GSAT-7 launched from French Guiana, off Pacific Coast, on Friday morning. Will become fully-operational by mid-September, networking all 140 Indian warships, 14 submarines and 200 aircraft, among other platforms. Its footprint will cover almost the entire IOR.
  • Satellite delayed by almost a decade. Absence of operational GSLV to launch the 2.6-tonne satellite a major factor. Overall cost, including manufacture and launch, of GSAT-7 around Rs 950 crore. GSAT-7A for IAF and Army to follow by 2014-15.
  • India is a late starter in military space arena despite expansive civil programme. Armed forces forced to depend on civilian "dual-use" satellites or leasing foreign transponders. Government reluctant to approve a full-fledged Aerospace Command.
  • Around 300 dedicated or dual-use military satellites currently in orbit, with the US owning 50% of them, followed by Russia and China. Beijing even testing ASAT (anti-satellite) weapons since January 2007, apart from active kinetic and directed-energy laser weapons as well as nano-satellite programmes. Wants space station with military applications by 2020


Geosynchronous Satellite Launch Vehicle

2015: Indigenous cryogenic engine

The Times of India, Aug 28 2015

Some facts, Cryogenic engine; Graphic courtesy: The Times of India, Aug 28 2015

India exercises cryogenic ghost with successful GSLV-D6 lift-off

Arun Ram & Janani Sampath

On January 5, 2014, when Indian Space Research Organisation (Isro) launched GSAT-14 using its Geosynchronous Satellite Launch Vehicle (GSLV-D5), the score card of its success using an indigenous cryogenic engine read: 1-1.

Isro broke the tie in style, clearing all doubts on its cryogenic capabilities by successfully firing GSLV-D6 carrying GSAT-6 into orbit. The first launch using an indigenous cryogenic engine, on April 15, 2010, was a failure.

GSLV-D6 lifted off from the Sriharikota spaceport at 4.52pm. About 17 minutes later, the rocket injected the 2,117kg satellite into a geosynchronous transfer orbit.“This shows that our previous success was not a fluke,“ said Isro chairman A S Kiran Kumar. He wasn't, however, exulting when he added: “We have understood the intricacies of a cryogenic engine. If we don't make errors, GSLV will be a good candidate for commercial launches.“

What went unelaborated were the military capabilities of the communication satellite (used also for television, telephone, radio and internet) with S-band and C-band transponders that cover the entire country -and a little beyond its boundaries. Besides the utility of GSAT, scientists were happy about the second consecutive success of the indigenous cryogenic engine. After India used up six of the seven engines bought from Russia, Isro's big missions now rest on the success of its cryogenic capabilities.

All eyes were on the “ador able boy“ (cryogenic engine) as the rocket's second stage burned out after about five minutes of flight. When the cryogenic engine ignited, there was a roaring applause.The next 12 minutes, when the engine propelled the satellite into space, were marked by a calm suspense that ended with the satellite being put into an elliptical geosynchronous transfer orbit.

Personal tools
Namespaces

Variants
Actions
Navigation
Toolbox
Translate